
An Inexact Newton Method Derived from Efficiency

Analysis*

NAIYANG DENG1, YI XUE2, JIANZHONG ZHANG3 and PING ZHONG1

1China Agricultural University, Beijing 100083, China (E-mail: dengnaiyang@vip.163.com)
2Beijing Polytechnic University, Beijing 100022, China
3City University of Hong Kong, Hong Kong

(Received 30 March 2004 accepted 1 April 2004)

Abstract. We consider solving an unconstrained optimization problem by Newton-PCG like
methods in which the preconditioned conjugate gradient method is applied to solve the

Newton equations. The main question to be investigated is how efficient Newton-PCG like
methods can be from theoretical point of view. An algorithmic model with several parameters
is established. Furthermore, a lower bound of the efficiency measure of the algorithmic model

is derived as a function of the parameters. By maximizing this lower bound function, the
parameters are specified and therefore an implementable algorithm is obtained. The efficiency
of the implementable algorithm is compared with Newton’s method by theoretical analysis
and numerical experiments. The results show that this algorithm is competitive.

Mathematics Subject Classification: 90C30, 65K05.

Key words: Cholesky factorization, Efficiency coefficient, Newton equation, Preconditioned
conjugate gradient method, Unconstrained optimization.

1. Introduction

We consider local algorithms for the unconstrained optimization problem

min fðxÞ; x 2 Rn: ð1:1Þ
If the Hessian matrix is available, Newton-like method is popular for solv-
ing the problem (see e.g. [6] and [9]). In every iteration, its computation
cost consists of the following two parts: (1) evaluating one Hessian r2f
and one gradient rf which form a Newton equation; (2) solving a Newton
equation. However, for a significant number of widely different applica-
tions, the cost of part (2) tends to be dominate (see e.g. [3]). We confine
ourselves to such case in this paper.

*This work was supported by the National Science Foundation of China Grant No. 10371131, and

Hong Kong Competitive Earmarked Research Grant CityU 1066/00P from Hong Kong University

Grant Council

Journal of Global Optimization (2005) 31:287–315 � Springer 2005

A number of modifications have been proposed to improve the original
Newton’s method. An interesting approach is Newton-CG like algorithms,
which are based on the analysis on the inexact Newton method in [4] and the
properties of conjugate gradient method (CG method) (see e.g. [14]). First,
Steihaug and Toint proposed Newton-CG like algorithms (see [18] and [19]),
in which the Newton equation is solved by CG method approximately. Later,
these algorithms were well developed to form a kind of Newton-PCG algo-
rithms, in which the CG method is replaced by PCG method (preconditioned
CG method). In a PCG method, using good preconditioning strategy is
important. Some general-purpose preconditioners have been proposed. The
most important strategies of this type include symmetric successive overre-
laxation (SSOR) (see e.g. [17]), incomplete Cholesky factorization (see e.g.
[10]) and banded preconditioners (see e.g. [2]). It has been shown by a large
amount of experiments that, generally speaking, Newton-PCG like algo-
rithms are very successful (see e.g. [2, 7, 8, 13]. However, their success varies
greatly from problem to problem (see e.g. [14]), and the superiority of this
type of algorithms is usually shown by numerical results alone.
Following [5], this paper investigates further the question that how effi-

cient the Newton-PCG like methods can be. Our research is undertaken
mainly from a theoretical point of view via a rather rigorous analysis on
the efficiency issue, but it is also supported by experimental results. In [5],
a Newton-PCG like algorithm was proposed in which the termination cri-
terion for the subiterations in the PCG step is

jjrðskÞjj ¼ jjr2fðxkÞsk þrfðxkÞjjOjjrfðxkÞjj2þ�; ð1:2Þ
where � is a small positive scalar. The conclusions of [5] are obtained under
rather strong assumptions, including that for any nonzero h 2 Rn;r3fðx�Þ
satisfies

r3fðx�Þhh 6¼ 0; ð1:3Þ
where x� is the solution to (1.1).
In this paper, a general algorithmic model is established. Its behavior,

including the convergence speed, is flexible. For example, there is no any
restriction on the one-step convergence order for the sequence generated
by the algorithmic model, while the precisely quadratic convergence is
enforced in [5]. Instead of assigning the power in the termination criterion
(1.2) to be 2 + � in [5], the corresponding power in the algorithmic model
is a parameter, and the value of which can be selected. In fact the algo-
rithm depends on a set of parameters, and the selection of the parameters
should maximize the efficiency, which is a key point for the success of the
algorithm. It is observed that some commonly used efficiency indexes are
too restrictive to fit into our algorithmic model. Fortunately, efficiency of
iterative methods was thoroughly investigated by Brent in [1] in which an

288 N. DENG ET AL.

exact measure of efficiency was given that is applicable to our study. This
measure forms one of the foundations of this paper, and according to it,
the parameters are specified. Thus the implementable algorithm obtained
in this way is more efficient than the algorithm in [5].
It should be pointed out that the assumption (1.3) has been removed in

this paper. In fact, we only use the following standard assumptions:

ASSUMPTION (A1): r2fðxÞ is Lipschitz continuous with the constant
L in a neighborhood of the solution x� to (1.1);
ASSUMPTION (A2): r2fðx�Þ is symmetric positive definite.
This paper is organized as follows. In Section 2, the algorithmic model

containing several parameters is proposed. In Section 3, we derive a lower
bound for the efficiency of the algorithmic model, which is a function of
the parameters. By maximizing this lower bound, an implementable algo-
rithm is established in Section 4, and the efficiency of which is also com-
pared with Newton’s method from a theoretical point of view in the same
section. Section 5 contains main results of our numerical experiment.
For convenience of expression, we adopt the following convention:

Xb

a

� � � ¼ 0; when a > b: ð1:4Þ

2. A New Algorithmic Model

The algorithmic model that we propose here is a class of Newton-PCG like
methods in which the Newton equation is solved either by a CF step or by
a PCG step. The PCG step is obtained by using the standard precondi-
tioned conjugate gradient method. More precisely, the following Algorithm
PCG(C;A; b; l; e) is used to solve the linear system

As ¼ b; ð2:1Þ
where C is the preconditioner, l is the maximum number of subiterations,
and e is a scalar used in the termination criterion.

ALGORITHM PCG(C;A; b; l; e)
Step 0. Initial data: set the initial point s0 ¼ 0; r0 ¼ �b. Set i ¼ 1.
Step 1. Termination test : if

jjri�1jjOjjbjj1þe or i� 1 ¼ l; ð2:2Þ
go to Step 4.
Step 2. Subiteration:
(a) set z ¼ Cri�1; ti�1 ¼ zTri�1;
(b) if i ¼ 1, then set q ¼ z; otherwise set b ¼ ti�1=ti�2 and q ¼ zþ bq;
(c) set si ¼ si�1 þ kq, where k ¼ ti�1=q

Tw and w ¼ Aq;
(d) set ri ¼ ri�1 þ kw.

AN INEXACT NEWTON METHOD 289

Step 3. Set i ¼ iþ 1 and go to step 1.
Step 4. Set ~s ¼ si�1.

Using Algorithm PCG(�), the following algorithmic model, called Algo-
rithm CF-PCG(p; l1 . . . ; lp; a1; . . . ; ap), is established, where p; l1; . . . ; lp;
a1; . . . ; ap are parameters: p is such a nonnegative integer that every CF step
is followed by p PCG steps; the positive integers l1; . . . ; lp are respectively the
maximum numbers of subiterations in these PCG steps; the positive scalars
a1; . . . ; ap are used in the termination test of these PCG steps.

ALGORITHM CF-PCG(p; l1; . . . ; lp; a1; . . . ; ap)
Step 0. Initial data: set the initial point x0 2 Rn. Set k ¼ 0.
Step 1. Termination test : if rfðxkÞ ¼ 0, stop.
Step 2. Switch test: if k can be divided by pþ 1 with no remainder, go

to Step 3; Otherwise go to Step 4.
Step 3. CF Step: set

Bk ¼ r2fðxkÞ: ð2:3Þ
Find the solution sk to the Newton equation

r2fðxkÞs ¼ �rfðxkÞ ð2:4Þ
by Cholesky factorization r2fðxkÞ ¼ LkDkL

T
k . Set m ¼ 0, then go to Step 5.

Step 4. PCG Step: set Bk ¼ Bk�1 and m ¼ mþ 1. Find ~s by Algorithm
PCGððBkÞ�1;r2fðxkÞ;�rfðxkÞ; lm; lm=amÞ. Set sk ¼ ~s.
Step 5. Update the iterate: set xkþ1 ¼ xk þ sk. Set k ¼ kþ 1 and go to

Step 1.
We write the sequence fxkg generated by Algorithm CF-PCGðp; l1; . . . ;

lp; a1; . . . ; apÞ as

fxkg ¼ fx0ðpþ1ÞCF ;x
0ðpþ1Þ1
PCG ; . . . ;x

jðpþ1Þ
CF ;x

jðpþ1Þþ1
PCG ; . . . ;x

jðpþ1Þþp
PCG ;x

ðjþ1Þðpþ1Þ
CF ; . . .g

ð2:5Þ
where the subscripts CF or PCG are used to show which step (CF Step or
PCG Step) is executed at the corresponding iterate (but these subscripts
are often omitted in later sections in order to simplify notations).

3. The Efficiency Analysis of Algorithm CF-PCGðp; l1; . . . ; lp; a1; . . . ; ap)

The efficiency of Algorithm CF-PCG(p; l1; . . . ; lp; a1; . . . ; ap) is analyzed in
this section under Assumptions (A1) and (A2) described in Section 1. The
main purpose is to derive a lower bound of its efficiency which will be
given in Theorem 3.9 below. First we cite a definition of the efficiency
given by Brent [1] and define ‘‘Progress index’’ which is critical to the
proof of Theorem 3.9.

290 N. DENG ET AL.

DEFINITION 3.1.([1]) Efficiency coefficient: suppose that the sequence
fx0; x1; . . . ;xk; . . .g is generated by an algorithm. If fxkg converges to the
solution x� to (1.1), then the efficiency coefficient C of the algorithm is
defined by

C ¼ lim inf
k!1

lnð� ln jjxk � x�jjÞ
Pk

i¼1 Q½xi�1;xi�
; ð3:1Þ

where Q½xi�1;xi� is the computation cost required to compute xi from xi�1.

DEFINITION 3.2. Progress index : suppose both xCF and xc are near the
solution x� to (1.1). The progress index m ¼ m½xCF; xc� from xCF to xc with
respect to x� is deffined as

m ¼ m½xCF;xc� ¼
ln jjxc � x�jj
ln jjxCF � x�jj : ð3:2Þ

The remainder of this section is to estimate the efficiency coefficient of
Algorithm CFPCGðp; l1; . . . ; lp; a1; . . . ; ap) and to derive Theorem 3.9 via
the following five lemmas.

LEMMA 3.3. Assume that xþ ¼ xCF þ sCF, where sCF is the solution to
Newton equation

r2fðxCFÞs ¼ �rfðxCFÞ:
Then there exists d 2 ð0; 1Þ such that for the solution x� to (1.1), when
jjxCF

� x�jjO d; we have

m½xCF;xþ�P 2þ h1; ð3:3Þ
where h1 ¼ ln c0

ln jjxCF�x�jj < 0; c0P 1 is a constant which depends only on r2fðx�Þ
and the Lipschitz constant L.

Proof. It is well known (see e.g. [6]) that Newton’s method is locally con-
vergent with at least q-order 2. More precisely, when d is small enough, we
have

jjxþ � x�jj ¼ jjxCF �r2fðxCFÞ�1rfðxCFÞ � x�jjOc0jjxCF � x�jj2; ð3:4Þ
where c0P1 is a constant which depends only on r2fðx�Þ and L. Thus,
from (3.4) and Definition 3.2, we obtain (3.3). h

LEMMA 3.4 Let the progress index m from xCF to xc with respect to x�

satisfy

m ¼ m½xCF; xc�P 1: ð3:5Þ
Assume that ~s is obtained by Algorithm PCGðr2fðxCFÞ�1;r2fðxcÞ;
�rfðxcÞ; l; l=a) with a P 1. Then there exists d 2 ð0; 1Þ such that when

AN INEXACT NEWTON METHOD 291

jjxCF � x�jjOd and jjxc � x�jjOd, the residual rð~sÞ ¼ r2fðxcÞ~sþrfðxcÞ sat-
isfies

jjrð~sÞjjOcjjrfðxcÞjj1þl=maxðm;aÞ; ð3:6Þ
where c is a constant which depends only on r2fðx�Þ and the Lipschitz con-
stant L.

Proof. Without loss of generality, we assume jjrfðxcÞjj < 1. According
to the termination condition (2.2), there are two possibilities: either

jjrð~sÞjjOjjrfðxcÞjj1þl=a; ð3:7Þ
or the number of subiterations is l with lOn, and in this case,

~s ¼ sl: ð3:8Þ
The former case implies that the inequality (3.6) is true with c ¼ 1. So we
only need to show (3.6) for the latter case.
First, we estimate the difference between ðr2fðxcÞÞij and ðr2fðxCFÞÞij ,

where ð�Þij is the element in the i-th row and the j-th column of the matrix.
By Assumption (A1), Definition 3.2 and (3.5), we see that when d is small
enough,

jðr2fðxcÞÞij � ðr2fðxCFÞÞijjOLjjxc � xCFjjOLðjjxc � x�jj þ jjxCF � x�jjÞ

¼ Lðjjxc � x�jj þ jjxc � x�jj1=mÞO2Ljjxc � x�jj1=m:
ð3:9Þ

On the other hand, by Assumption (A2), we conclude that when d is small
enough,

jjrfðxcÞjj ¼ jjrfðxcÞ � rfðx�ÞjjP
1

2
c1jjxc � x�jj; ð3:10Þ

where c1 ¼ minðkmin; 1Þ, and kmin is the smallest eigenvalue of the matrix
r2fðx�Þ. It follows from (3.9) and (3.10) that

jðr2fðxcÞÞij � ðr2fðxCFÞÞijjO2Lð2=c1Þ1=mjjrfðxcÞjj1=mOc2jjrfðxcÞjj1=m;
ð3:11Þ

where c2 ¼ 4L=c1, which is independent of m.
Second, define

A ¼ ðr2fðxCFÞÞ�1=2r2fðxcÞðr2fðxCFÞÞ�1=2

¼ Iþ ðr2fðxCFÞÞ�1=2½r2fðxcÞ � r2fðxCFÞ�ðr2fðxCFÞÞ�1=2:
ð3:12Þ

By Assumptions (A1) and (A2), we know that when d is small enough A is
symmetric positive definite. Now we estimate its condition number k2ðAÞ.
Let

292 N. DENG ET AL.

c3 ¼ 2maxfjðr2fðx�Þ�1=2Þijjj1Oi; jOng:

It is easy to see that, when d is small enough,

jðr2fðxCFÞ�1=2ÞijjOc3; 8i; j: ð3:13Þ

So from (3.13) and (3.11),

jðr2fðxCFÞ�1=2½r2fðxcÞ � r2fðxCFÞ�r2fðxCFÞ�1=2ÞijjOðc4=nÞjjrfðxcÞjj
1þm;

ð3:14Þ
where c4 ¼ 2n3c2c

2
3. By Gerschgorin Theorem (see, e.g. Theorem 2.3.9 in

[15]), (3.12), and (3.14), we claim that every eigenvalue k of A satisfies

1� c4jjrfðxcÞjj1=mOkO1þ c4jjrfðxcÞjj1=m: ð3:15Þ
Therefore, the condition number j2ðAÞ has the following estimate

j2ðAÞO
1þ c4jjrfðxcÞjj1=m

1� c4jjrfðxcÞjj1=m
: ð3:16Þ

Thus, noticing lim
d!0
jjrfðxcÞjj ¼ 0; we conclude that when d is small enough,

j2ðAÞO2ð1þ c4Þ; ð3:17Þ

j2ðAÞ � 1O
2c4jjrfðxcÞjj1=m

1� c4jjrfðxcÞjj1=m
O4c4jjrfðxcÞjj1=m: ð3:18Þ

Third, consider the case of solving the linear system

A�s ¼ �b ð3:19Þ
by the conjugate gradient method (without a preconditioner), where A is
defined by (3.12) and

�b ¼ �ðr2fðxCFÞÞ�1=2rfðxcÞ: ð3:20Þ
Suppose that the initial point �s0 ¼ 0 and �sl is the approximate solution
obtained after l subiterations. Let us estimate the residual

�rð�slÞ ¼ A�sl � �b: ð3:21Þ
It is not difficult to see that for all z 2 Rn,

ffiffiffiffiffiffiffiffi
kmin

p
jjzjjAOjjAzjjO

ffiffiffiffiffiffiffiffiffi
kmax

p
jjzjjA; ð3:22Þ

where kmax and kmin are respectively the largest and smallest eigenvalues of
A. Therefore,

jj�rð�slÞjj
jj �bjj

¼ jjA�sl � �bjj
jjA�s0 � �bjj

¼ jjAð�sl � �s �Þjj
jjAð0� �s �ÞjjO

ffiffiffiffiffiffiffiffiffi
kmax

p
� jj�sl � �s �jjAffiffiffiffiffiffiffiffi

kmin

p
� jj0� �s �jjA

; ð3:23Þ

AN INEXACT NEWTON METHOD 293

jj�rð�slÞjj=jj �bjjO
ffiffiffiffiffiffiffiffiffiffiffiffi
k2ðAÞ

p
� jj�sl � �s �jjA=jj0� �s �jjA; ð3:24Þ

where �s � is the solution to (3.19). It is well known that, for the conjugate
gradient method the following result holds (see, e.g. [11])

jj�sl � �s �jjAO2jj0� �s �jjA

ffiffiffiffiffiffiffiffiffiffiffiffi
j2ðAÞ

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffi

j2ðAÞ
p

þ 1

 !l

: ð3:25Þ

Combining (3.24), (3.25), (3.20), (3.17) and (3.18), we have

jj�rð�slÞjjO2jj �bjj �
ffiffiffiffiffiffiffiffiffiffiffiffi
k2ðAÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
j2ðAÞ

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffi

j2ðAÞ
p

þ 1

 !l

O2jjr2fðxCFÞ�1=2jj � jjrfðxcÞjj �
ffiffiffiffiffiffiffiffiffiffiffiffi
j2ðAÞ

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
j2ðAÞ

p
� 1Þl

O2jjr2fðxCFÞ�1=2jj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ c4Þ

p
ð4c4ÞljjrfðxcÞjj1þl=m

Oc5jjrfðxcÞjj1þl=m; ð3:26Þ

where c5 ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ c4Þ

p
ð4c4Þn � jjr2fðx�Þ�1=2jj.

Finally, we prove (3.6). Noticing (3.8), it is sufficient to prove

jjrðslÞjjOcjjrfðxcÞjj1þl=m: ð3:27Þ
In fact, it is not difficult to show that

�sl ¼ r2fðxCFÞ1=2sl;
and

rðslÞ ¼ ðr2fðxCFÞÞ1=2�rð�slÞ: ð3:28Þ
Therefore, from (3.28) and (3.26), we get (3.27) with c ¼ 2c5jjðr2fðx�ÞÞ1=2jj
provided that d is small enough. h

LEMMA 3.5. Let the condition (3.5) in Lemma 3.4 be held. Assume that
xþ ¼ xc þ ~s, where ~s is defined in Lemma 3.4. Then there exists d 2 ð0; 1Þ
such that for the solution x� to (1.1), when jjxCF � x�jjOd and jjxc � x�jjO
d, we have

m½xCF;xþ�Pwðl; a; m½xCF;xc�Þ þ h2; ð3:29Þ
where h2 ¼ ln c00

ln jjxCF�x�jj < 0; c00P1 is a constant which depends only on r2fðx�Þ
and the Lipschitz constant L, and

wðl; a; mÞ ¼ mþminð1; m
aÞl; if lOmaxðm; aÞ;

2m; if l > maxðm; aÞ:

�
ð3:30Þ

Proof. Obviously, (3.4) is still true when the subscript CF is replaced by c.
Therefore, from (3.5) and Lemma 3.4, we know that when d is small enough,

294 N. DENG ET AL.

jjxþ � x�jj ¼ jjxc �r2fðxcÞ�1rfðxcÞ � x� þ r2fðxcÞ�1rð~sÞjj
Oc0jjxc � x�jj2 þ 2jjr2fðx�Þ�1jj � jjrð~sÞjj

Oc0jjxc � x�jj2 þ 2cjjr2fðx�Þ�1jj jjrfðxcÞjj1 þ
l

maxðm½xCF ;xc �;aÞ:

ð3:31Þ
However, by Assumption (A2), we know that when d is small enough,

jjrfðxcÞjj ¼ jjrfðxcÞ � rfðx�ÞjjO2 kmaxjjxc � x�jj; ð3:32Þ
where kmax is the largest eigenvalue of r2fðx�Þ. Therefore,

jjxþ � x�jjO c00jjxc � x�jj1þl=maxðm½xCF;xc�;aÞ; if lOmaxðm½xCF; xc�; aÞ;
c00jjxc � x�jj2; if l > maxðm½xCF; xc�; aÞ;

�

ð3:33Þ
where c00 ¼ c0 þ 8cjjr2fðx�Þ�1jj �maxð1; k2maxÞ.
Next we examine the cases lOmaxðm½xCF;xc�; aÞ and l > maxðm½xCF;xc�; aÞ

separately. For the case lOmaxðm½xCF;xc�; aÞ, we conclude from (3.33) that,
when d is small enough,

m½xc; xþ� ¼
ln jjxþ � x�jj
ln jjxc � x�jjP1þ l

maxðm½xCF; xc�; aÞ
þ ln c00

ln jjxc � x�jj : ð3:34Þ

Therefore,

m½xCF;xþ� ¼ m½xCF; xc� � m½xc;xþ�

Pm½xCF;xc� þminð1; m½xCF;xc�=aÞlþ
ln c00

ln jjxCF � x�jj : ð3:35Þ

For the case l > maxðm½xCF; xc�; aÞ, we conclude from (3.33) that, when d is
small enough,

m½xc; xþ� ¼
ln jjxþ � x�jj
ln jjxc � x�jjP2þ ln c00

ln jjxc � x�jj : ð3:36Þ

Therefore

m½xCF;xþ� ¼ m½xCF; xc� � m½xc;xþ�P2m½xCF;xc� þ
ln c00

ln jjxCF � x�jj : ð3:37Þ

Combining (3.35) and (3.37) yields (3.29).

LEMMA 3.6. Let the first pþ 2 iterates generated by Algorithm CF�
PCGðp; l1; . . . ; lp; a1; . . . ; apÞ be denoted by fxCF; x1;x2; . . . ; xqþ1; . . . ; xp;
xpþ1g, where xCF ¼ x0 is the initial point. Then

lim inf
xCF!x�

m½xCF;xqþ1�Pmqþ1; q ¼ 0; 1; . . . ; p; ð3:38Þ

AN INEXACT NEWTON METHOD 295

where x� is the solution to (1.1) and mqþ1 ¼ mqþ1ðl1; . . . ; lq; a1; . . . ; aqÞ;
q ¼ 0; 1; . . . ; p; are defined by wð�Þ given in (3.30) recursively:

m1 ¼
def

2; ð3:39Þ
mqþ1 ¼ mqþ1ðl1; . . . ; lq; a1; . . . ; aqÞ ¼

def
wðlq; aq; mqÞ; q ¼ 1; . . . ; p: ð3:40Þ

Proof. Only the case pP1 is considered here since the conclusion is obvi-
ously true for the case p ¼ 0 by Lemma 3.3. Note that when q ¼ 0, (3.38)
can be obtained directly again by Lemma 3.3. So it is sufficient to assume
the validity of (3.38) with q ¼ i� 1ð0OqOp� 1Þ:

lim inf
xCF!x�

m½xCF;xi�Pmi ð3:41Þ

and to show its validity with q ¼ i:

lim inf
xCF!x�

m½xCF;xiþ1�Pmiþ1: ð3:42Þ

In fact, by Lemma 3.5, with xc;xþ; l and a there being substituted by
xi;xiþ1; li and ai, respectively, we conclude that

m½xCF;xiþ1�Pwðli; ai; m½xCF;xi�Þ þ h2; ð3:43Þ
where h2 is defined in Lemma 3.5. Therefore,

lim inf
xCF!x�

m½xCF;xiþ1�Pwðli; ai; m½xCF;xi�Þ: ð3:44Þ

However, it is not difficult to see that the function wð�; �; mÞ is continuous
and strictly increasing with respect to m. Thus, combining (3.44) and (3.41)
yields that

lim inf
xCF!x�

m½xCF;xiþ1�Pwðli; ai; miÞ: ð3:45Þ

Note that, by the definition (3.40), the right-hand-side of the above
inequality is just miþ1. The proof is completed.

(
The next lemma answers the question that how the lower bound mpþ1 in

(3.38) depends on ltðt ¼ 1; . . . ; pÞ. It is shown that, roughly speaking, there
is a critical value such that when lt is larger than this value, a further incre-
ment of lt cannot increase mpþ1.

LEMMA 3.7. Using the convention (1.4), the function mpþ1 ¼ mpþ1ðl1; . . . ;
lp; a1; . . . ; apÞ defined by (3.39) –(3.40) has the following properties.
(1) If

amO2þ
Xm�1

t¼1
lt; m ¼ 1; . . . ; p; ð3:46Þ

296 N. DENG ET AL.

and

lmO2þ
Xm�1

t¼1
lt; m ¼ 1; . . . ; p; ð3:47Þ

then

mpþ1ðl1; . . . ; lp; a1; . . . ; apÞ ¼ 2þ
Xp

t¼1
lt; ð3:48Þ

(2) Define

l0m ¼ minflm; 2þ
Xm�1

t¼1
l0tg; m ¼ 1; . . . ; p; ð3:49Þ

then

mpþ1ðl1; . . . ; lp; a1; . . . ; apÞO2þ
Xp

t¼1
l0t: ð3:50Þ

Furthermore, if

amO2þ
Xm�1

t¼1
l0t; m ¼ 1; . . . ; p; ð3:51Þ

then (3.50) is strengthened as

mpþ1ðl1; . . . ; lp; a1; . . . ; apÞ ¼ 2þ
Xp

t¼1
l0t: ð3:52Þ

Proof. (1) To show (3.48), it is sufficient to prove, by induction, that

mqþ1ðl1; . . . ; lq; a1; . . . ; aqÞ ¼ 2þ
Xq

t¼1
lt; q ¼ 0; 1; . . . ; p: ð3:53Þ

The definition (3.39) implies that the above equality with q ¼ 0 is true. So
the first step of the induction is completed.
As the second step, we assume the validity of (3.53) with q ¼ i� 1
ð0OqOp� 1Þ

miðl1; . . . ; li�1; a1; . . . ; ai�1Þ ¼ 2þ
Xi�1

t¼1
lt ð3:54Þ

and show the validity with q ¼ i:

miþ1ðl1; . . . ; li; a1; . . . ; aiÞ ¼ 2þ
Xi

t¼1
lt: ð3:55Þ

In fact, by the definition (3.40), (3.54) and (3.30),

AN INEXACT NEWTON METHOD 297

miþ1ðl1; . . . ; li;a1; . . . ;aiÞ

¼wðli;ai;miÞ ¼w li;ai;2þ
Xi�1

t¼1
lt

 !

¼
2þ

Pi�1

t¼1
ltþmin 1;

2þ
Pi�1

t¼1 lt

ai

� �
li; if liOmaxð2þ

Pi�1

t¼1
lt;aiÞ;

2ð2þ
Pi�1

t¼1
ltÞ; if li >maxð2þ

Pi�1

t¼1
lt;aiÞ:

8
>>><

>>>:

ð3:56Þ

Note that the conditions (3.47) and (3.46) imply that

liOmax 2þ
Xi�1

t¼1
lt; ai

 !
;

and

2þ
Pi�1

t¼1 lt
ai

P1:

Therefore (3.55) is obtained from the above two inequalities and (3.56).
Thus, the equality (3.48) is proved.
(2) We prove (3.52) first, and then (3.50). In order to prove (3.52), it is

sufficient to show that

m~iþ1 ¼ 2þ
X~i�1

t¼1
lt þ l0~i ð3:57Þ

if

lmO2þ
Xm�1

t¼1
lt; m ¼ 1; . . . ; ~i� 1; ð3:58Þ

l~i > l0~i ¼ 2þ
X~i�1

t¼1
lt; ð3:59Þ

and

amO2þ
Xm�1

t¼1
lt; m ¼ 1; . . . ; ~i: ð3:60Þ

Obviously, (3.39)–(3.40) and (3.30) lead to that, for i ¼ 1; . . . ; p,

miþ1 � mi ¼
min 1;

mi
ai

� �
li; if liOmaxðmi; aiÞ;

mi; if li > maxðmi; aiÞ.

(
ð3:61Þ

298 N. DENG ET AL.

On the other hand, by the proof in part (1), the conditions (3.58), (3.60)
and (3.49) ensure that

m~i ¼ 2þ
X~i�1

t¼1
lt ¼ l0~i: ð3:62Þ

Therefore, (3.61) leads to

m~iþ1 � m~i ¼
min 1;

2þ
P~i�1

t¼1 lt

a~i

� �
l~i; if l~iOmax 2þ

P~i�1

t¼1
lt; a~i

 !
;

2þ
P~i�1

t¼1
lt; if l~i > max 2þ

P~i�1

t¼1
lt; a~i

 !
.

8
>>>><

>>>>:

ð3:63Þ

Notice that (3.59) and (3.60) imply that

l~i > maxð2þ
X~i�1

t¼1
lt; a~iÞ: ð3:64Þ

Hence (3.63) yields

m~iþ1 � m~i ¼ 2þ
X~i�1

t¼1
lt: ð3:65Þ

Now (3.57) is obtained immediately by substituting (3.62) into (3.65), and
hence (3.52) is proved. h

In order to prove (3.50), it is sufficient to show that mpþ1ðl1; . . . ; lp;
a1; . . . ; apÞ is non-increasing with respect to atðt ¼ 1; . . . ; pÞ, or by the defi-
nition (3.39)–(3.40), show that

wðl; að1Þ; mÞPwðl; að2Þ; mÞ; if að1Þ < að2Þ; ð3:66Þ
and

wðl; a; mð1ÞÞOwðl; a; mð2ÞÞ; if mð1Þ < mð2Þ; ð3:67Þ
where wð�Þ is defined by (3.30). In fact, for the cases

lOmaxðm; að1ÞÞ and lOmaxðm; að2ÞÞ; ð3:68Þ
and

l > maxðm; að1ÞÞ and l > maxðm; að2ÞÞ; ð3:69Þ
the validity of (3.66) is obvious. So we only need to examine the case

l > maxðm; að1ÞÞ and lOmaxðm; að2ÞÞ: ð3:70Þ
Obviously, (3.70) implies that

wðl; að1Þ; mÞ ¼ 2mPmþminð1; m=að2ÞÞl ¼ wðl; að2Þ; mÞ: ð3:71Þ

AN INEXACT NEWTON METHOD 299

Hence, (3.66) is true. The validity of (3.67) can be proved similarly. Q.E.D.

Remark 3.8. According to the definition (3.1), the efficiency coefficient of
Algorithm CF-PCGðp; l1; . . . ; lp; a1; . . . ; apÞ is related to not only the con-
vergence speed, but also the computation costs QHgD;QHg;QD and QI,
which are defined as follows:

QHgD ¼ QHg þQD; QHg ¼ QH þQg;

QH is the computation cost to evaluate a Hessian r2f; Qg is the computa-
tion cost to evaluate a gradient rf; QD is the computation cost in a CF
Step; QI is an upper bound of the computation cost in one subiteration of
a PCG Step.
It is reasonable to measure the above computation costs by the corre-

sponding numbers of multiplicative operations involved. So, we regard QH

and Qg as respectively the number of multiplicative operations to evaluate
a Hessian and a gradient, and QD is the number of such operations in a
CF step, which is given by the formula:

QD ¼
1

6
n3 þ 3

2
n2 � 2

3
n: ð3:72Þ

Note that the number of multiplicative operations in the first subiteration
in a PCG Step is 2n2 þ 5n þ 1, but the number in each of the later subit-
erations is 2n2 þ 6nþ 2. Since the difference of these two numbers is rather
small, the larger one

QI ¼ maxf2n2 þ 5nþ 1; 2n2 þ 6nþ 2g ¼ 2n2 þ 6nþ 2 ð3:73Þ
is used as an upper bound of them.

THEOREM 3.9. Algorithm CF� PCGðp; l1; . . . ; lp; a1; . . . ; apÞ is locally con-
vergent. Furthermore, its efficiency coefficient C satisfies

CPC¼def
ln mpþ1ðl1; . . . ; lp; a1; . . . ; apÞ
QHgD þ pQHg þ ð

Pp
t¼1 ltÞQI

; ð3:74Þ

where QHgD;QHg and QI are the computation costs defined in Remark 3.8,
and mpþ1ðl1; . . . ; lp; a1; . . . ; apÞ has the following property: if we define

l0m ¼ min lm; 2þ
Xm�1

t¼1
l0t

()
; m ¼ 1; . . . ; p; ð3:75Þ

then

mpþ1ðl1; . . . ; lp; a1; . . . ; apÞO2þ
Xp

t¼1
l0t: ð3:76Þ

Furthermore, if

300 N. DENG ET AL.

amO2þ
Xm�1

t¼1
l0t; m ¼ 1; . . . ; p; ð3:77Þ

then

mpþ1ðl1; . . . ; lp;a1; . . . ;apÞ ¼ 2þ
Xp

t¼1
l0t ¼ mpþ1ðl01; . . . ; l0p;a1; . . . ;apÞ: ð3:78Þ

Proof. It is easy to see from the definition (3.39)–(3.40) that

miP2; i ¼ 1; . . . ; pþ 1:

Hence by Lemma 3.6, we conclude that, when x0 is close enough to the
solution x� to (1.1), the sequence fxkg generated by Algorithm CF-PCG
ðp; l1; . . . ; lp; a1; . . . ; apÞ is convergent.
Now let us turn to the validity of (3.74). Since Lemma 3.7 shows that

mpþ1 ¼ mpþ1ðl1; . . . ; lp; a1; . . . ; apÞ, which is defined by (3.39)–(3.40), has the
property (3.75)–(3.78), it is sufficient to show that

CP
ln mpþ1

QHgD þ pQHg þ ð
Pp

t¼1 ltÞQI
: ð3:79Þ

By definition (3.2),

lnð� ln jjxjðpþ1Þþqþ1 � x�jjÞ ¼ lj;qþ1 þ lj þ � � � þ l1 þ lnð� ln jjx0 � x�jjÞ;
ð3:80Þ

where

li ¼ ln m½xði�1Þðpþ1Þ; xiðpþ1Þ�; i ¼ 1; . . . ; j; ð3:81Þ

lj;qþ1 ¼ ln m½xjðpþ1Þ; xjðpþ1Þþqþ1�: ð3:82Þ
Hence, using the notation Q½�; �� defined in (3.1), we have

lnð� ln jjxk � x�jjÞ
Pk

i¼1 Q½xi�1;xi�
¼ gðj; qÞ þ lnð� ln jjx0 � x�jjÞ

Qj;qþ1 þQj þ � � � þQ1
; ð3:83Þ

where

gðj; qÞ ¼ lj;qþ1 þ lj þ � � � þ l1

Qj;qþ1 þQj þ � � � þQ1
; ð3:84Þ

Qi ¼ Q½xði�1Þðpþ1Þ;xiðpþ1Þ�; i ¼ 1; 2; . . . ; j; ð3:85Þ

Qj;qþ1 ¼ Q½xjðpþ1Þ;xjðpþ1Þþqþ1�: ð3:86Þ
It is easy to see that

AN INEXACT NEWTON METHOD 301

QHgD þ pQHg þ
Xp

t¼1
lt

 !
QIPQiPQHgD > 0; i ¼ 1; . . . ; j: ð3:87Þ

Therefore by definition (3.1), in order to show (3.79), it is sufficient to
prove that

lim inf
j!1

gðj; qÞP
ln mpþ1

QHgD þ pQHg þ ð
Pp

t¼1 ltÞQI
; ð3:88Þ

where mpþ1 is defined by (3.39)–(3.40). We prove (3.88) for two cases: q ¼ p
and 0OqOp� 1, respectively. For the first case q ¼ p; gðj; qÞ can be written
as

gðj; qÞ ¼ ljþ1 þ lj þ � � � þ l1

Qjþ1 þQj þ � � � þQ1
: ð3:89Þ

Note that the procedure of generating xiðpþ1Þ from xði�1Þðpþ1Þði ¼ 1; 2; . . .Þ is
the same as the one that generates xpþ1 from x0. Therefore, by Lemma 3.6
we have

lim inf
i!1

liP ln mpþ1: ð3:90Þ

Combining (3.89), (3.90) and (3.87) yields

lim inf
j!1

gðj; qÞ ¼ lim inf
j!1

ljþ1 þ � � � þ l1

Qjþ1 þ � � � þQ1

P
ln mpþ1

QHgD þ pQHg þ ð
Pp

t¼1 ltÞQI
: ð3:91Þ

The proof is completed for the first case.
For the second case 0OqOp� 1, it is apparent that

gðj; qÞO lj þ � � � þ l1

Qj þ � � � þQ1
� Qj þ � � � þQ1

Qj;qþ1 þQj þ � � � þQ1
: ð3:92Þ

Note that the inequality (3.87) implies that

lim
j!1

Qj þ � � � þQ1

Qj;qþ1 þQj þ � � � þQ1
¼ 1: ð3:93Þ

Combining (3.92), (3.93) and (3.91) shows the validity of the inequality
(3.88) for the second case. Thus the theorem is proved. h

4. The Implementable Algorithm and Its Efficiency

The purpose of this section is to derive an implementable algorithm from
the algorithmic model CF-PCGpðl1; . . . ; lp; a1; . . . ; apÞ and investigate its
efficiency.

302 N. DENG ET AL.

In order to establish an implementable algorithm from CF-PCGðp;
l1; . . . ; lp; a1; . . . ; apÞ, we should specify the parameters p; l1; . . . ; lp; a1; . . . ; ap:
A natural idea is to select such parameters that maximize the correspond-
ing efficiency coefficient. However, it is difficult to find the precise relation-
ship between the efficiency coefficient and the parameters, or a definite
relationship may not exist and the situation is problem dependent. Instead
of the efficiency coefficient itself, its lower bound given by the right hand
side of (3.74) in Theorem 3.9 is maximized as follows. We first investigate
the selection of the parameters a1; . . . ; ap. Suppose that l1; . . . ; lp are given,
comparing (3.76) with (3.78) results in the selection

amO2þ
Xm�1

t¼1
l0t; m ¼ 1; . . . ; p;

where l0t is defined by (3.75). However, am appears in Step 4 of Algorithm
CF-PCGð�Þ and exercises influences on the termination of the subiterations
in the PCG Step according to (2.2). It is easy to see that the larger the
value am, the more possible to terminate earlier. Therefore, to save the pos-
sible computation cost, it makes sense to select

am ¼ 2þ
Xm�1

t¼1
l0t; m ¼ 1; . . . ; p: ð4:1Þ

Now we turn to the selection of l1; . . . ; lp such that C in (3.74) is maxi-
mized. (4.1) yields the validity of (3.78), which implies that, for any
l1; . . . ; lp and the corresponding l01; . . . ; l0p,

ln mpþ1ðl1; . . . ; lp; a1; . . . ; apÞ
QHgD þ pQHg þ ð

Pp
t¼1 ltÞQI

O
ln mpþ1ðl01; . . . ; l0p; a1; . . . ; apÞ
QHgD þ pQHg þ ð

Pp
t¼1 l

0
tÞQI

: ð4:2Þ

Obviously,

l0mO2þ
Xm�1

t¼1
l0t; m ¼ 1; . . . ; p:

The above two inequalities imply that C in (3.74) must have a maximizer
which satisfies

lmO2þ
Xm�1

t¼1
lt; m ¼ 1; . . . ; p: ð4:3Þ

In other words, the maximum of C can still be achieved if we include the
extra constraint (4.3). The constraint (4.3) and (3.75) mean that

l0m ¼ lm; m ¼ 1; . . . ; p: ð4:4Þ

Thus the selection formula (4.1) becomes

AN INEXACT NEWTON METHOD 303

am ¼ 2þ
Xm�1

t¼1
lt: ð4:5Þ

Under the conditions (4.5) and (4.3) and by (3.78), with (4.4) in our mind,
maximizing C in (3.74) leads to the following optimization problem with
respect to p; l1; . . . ; lp:

max
lnð2þ

Pp
t¼1 ltÞ

QHgD þ pQHg þ ð
Pp

t¼1 ltÞQI
;

s.t lmO2þ
Xm�1

t¼1
lt; m ¼ 1; . . . ; p; ð4:6Þ

p is a nonnegative integer and l1; l2; . . . ; lp are positive integers: ð4:7Þ

Introducing a variable r ¼
Pp

t¼1 lt, the above problem is transformed to
the following optimization problem with respect to p; l1; . . . ; lp and r:

max ~vðp; rÞ ¼ lnð2þ rÞ
QHgD þ pQHg þ rQI

;

s.t lmO2þ
Xm�1

t¼1
lt; m ¼ 1; . . . ; p; ð4:8Þ

r ¼
Xp

t¼1
lt; ð4:9Þ

p is a nonnegative integer and l1; l2; . . . ; lp are positive integers:

ð4:10Þ
This problem can be solved by two stages:

(1) For a fixed r, find the optimal values p ¼ pðrÞ and lm ¼ lmðrÞ;
m ¼ 1; . . . ; p. Obviously, these optimal values should make the objec-
tive function ~vðp;rÞ as large as possible, i.e. p ¼ pðrÞ should be as
small as possible. This fact, by (4.9), leads to the conclusion that
lm ¼ lmðrÞ should be as large as possible. Thus if r ¼ 0, then p ¼ 0;
if r ¼ 1, then l1 ¼ 1 and p ¼ 1; if rP2, then

lmðrÞ ¼ 2þ
Xm�1

t¼1
ltðrÞ ¼ 2m; m ¼ 1; 2; . . . ; p� 1;

lpðrÞ ¼ r�
Xp�1

t¼1
ltðrÞ ¼ r� ð2p � 2Þ;

304 N. DENG ET AL.

and p ¼ pðrÞ is the integer satisfying
PpðrÞ�1

m¼1 2m < rO
PpðrÞ

m¼1 2
m, or explici-

tly, p ¼ pðrÞ is the smallest integer not smaller than

lnðrþ 2Þ
ln 2

� 1: ð4:11Þ

(2) Find the optimal solution r� and the corresponding p� ¼ pðr�Þ and
l�m ¼ lmðr�Þ; m ¼ 1; . . . ; p. According to the results in stage (1), r� should
be a global solution to the one-dimensional optimization problem

max vðrÞ ¼ lnð2þ rÞ
QHgD þ pðrÞQHg þ rQI

; ð4:12Þ

s.t. r is a nonegative integer; ð4:13Þ

where pðrÞ is the smallest integer not smaller than lnð2þrÞ
ln 2 � 1. Thus after

getting r�, the corresponding optimal parameters p� and l�m can be
obtained easily. This yields the following algorithm:

ALGORITHM CF-PCG
In Algorithm CF-PCGðp; l1; . . . ; lp; a1; . . . ; apÞ; the parameters are speci-

fied as follows:

(1) Find the global solution r� to the one-dimensional optimization
problem (4.12)–(4.13).

(2) p ¼ p� ¼ pðr�Þ, where pðr�Þ is the smallest integer not smaller than
lnð2þr�Þ

ln 2 � 1.

(3) if r� ¼ 1; l1 ¼ l�1 ¼ 1; if r�P2,

lm ¼ l�m ¼
2m; m ¼ 1; . . . ; p� � 1;
r� � 2p

� þ 2; m ¼ p�:

�

(4) am ¼ a�m ¼ 2m; m ¼ 1; . . . ; p�:

THEOREM 4.1. If the initial point x0 is close enough to the solution x�, the
above Algorithm CF-PCG is well defined.

Proof. To prove that Algorithm CF-PCG is well-defined, we only need to
show the existence of the global solution r� to (4.12)–(4.13). In fact, it is
easy to see that for any nonnegative integer r,

vðrÞ < 1

QI
� lnð2þ rÞ

r
:

Therefore, noticing

lim
r!1

lnð2þ rÞ
r

¼ 0

AN INEXACT NEWTON METHOD 305

and

mð0Þ ¼ ln 2

QHgD
> 0;

we conclude that the series fvðrÞ; r ¼ 0; 1; 2; . . .g has a finite maximizer r�.
h

The efficiency coefficient of the above Algorithm CF-PCG is estimated
by the following theorem.

THEOREM 4.2. The efficiency coefficient C of Algorithm CF-PCG satisfies

CPv� ¼def vðr�Þ; ð4:14Þ
where vð�Þ is defined by (4.12), and r� is the global solution to (4.12)–(4.12).

Proof. The conclusion comes from Theorem 3.9 directly. Since Algo-
rithm CF-PCG contains PCG Steps which are used to solve the Newton
equation, its efficiency depends on the spectrum of the Hessian matrix r2f.
The worst case is considered in Theorem 4.2, while the best case is shown
in the following theorem. h

THEOREM 4.3. Suppose that when x is close enough to the solution x�,

j2ðr2fðxÞÞ ¼ 1; ð4:15Þ
where j2ð�Þ is the condition number. Then, the estimate (4.14) in Theorem
4.2 is improved as

CP�v �; ð4:16Þ
where

�v � ¼ lnð2þ r�Þ
QHgD þ �pðr�ÞQHg þ �pðr�ÞQI

: ð4:17Þ

Proof. Consider the sequence

fx0;x1; . . . ;xr�þ1; . . . ;xjðr
�þ1Þ;xjðr

�þ1Þþ1; . . . ;xjðr
�þ1Þþt; . . . ;xðjþ1Þðr

�þ1Þ; . . .g
ð4:18Þ

generated by Algorithm CF-PCG. According to the structure of the algo-
rithm, the maximum number of subiterations in the PCG Step at xjðr

�þ1Þþt is
either 2t (when 1Ot < �pðr�ÞÞ, or r� �

Pp�1
t¼1 2

t (when t ¼ p ¼ �pðr�ÞÞ. Now we
show that, under the condition (4.15), this maximum number is reduced to 1.
In fact, the PCG step at xjðr

�þ1Þþt is used to solve the Newton equation

r2fðxjðr�þ1ÞþtÞs ¼ �rfðxjðr�þ1ÞþtÞ: ð4:19Þ

306 N. DENG ET AL.

It is well known that this PCG Step is equivalent to the conjugate gradient
subiterations to the preconditional linear system

Aj;t�s ¼ �r2fðx jðr�þ1ÞÞ�1=2rfðxjð r�þ1ÞþtÞ ð4:20Þ
with the relationship

Aj;t ¼ r2fðx jðr�þ1ÞÞ�1=2r2fðx jðr�þ1ÞþtÞr2fðxjð r�þ1ÞÞ�1=2; ð4:21Þ
and

�s ¼ r2f x jðr�þ1Þ
� �1=2

s:

Obviously, the condition (4.15) implies that, for sufficientyly large j,

j2ðAj;tÞ ¼ 1: ð4:22Þ
Therefore, one conjugate gradient subiteration is enough to find the exact
solution to (4.20) to get the zero residual for both the preconditioned sys-
tem (4.20) and the original system (4.19). Therefore, according to the ter-
mination condition (2.2), the maximum number of subiterations in the
PCG Step at xjðr

�þ1Þþt is 1. Thus, the upper bound for the total number of
subiterations in all PCG Steps from xjðr

�þ1Þ to xðjþ1Þðr
�þ1Þ is reduced toP �pðr�Þ

t¼1 1 ¼ �pðr�Þ from the previous estimate
P �pðr�Þ

t¼1 lt ¼ ðr�Þ. The theorem is
completed. h

For the purpose of comparison, the efficiency of Newton’s method is given
in the following theorem, which can be considered as a particular case of
Theorem 3.9 with p ¼ 0, or obtained directly from the result in [1].

THEOREM 4.4. The efficiency coefficient CN of Newton’s method satisfies

CNPvN ¼ vNðnÞ ¼
def ln 2

QHgD
: ð4:23Þ

Now let us compare the lower bound of the efficiency coefficient of Algo-
rithm CF-PCG, v�, with the one of Newton’s method, vN. Note that, as
shown in Section 1, we are mainly interested in middle and large scale
problems where the arithmetic operations dominate the computing time,
i.e., the problems in which both QH and Qg are relatively small compared
with other costs. So, we consider the extreme case

QH ¼ Qg ¼ 0 ð4:24Þ

in the following theorem.

THEOREM 4.5. Compare Algorithm CF-PCG with Newton’s method and
consider the case that (4.24) holds. Suppose v� and vN are respectively given
in Theorems 4.2 and 4.4. Then the ratio m�=mN has the following properties:

AN INEXACT NEWTON METHOD 307

(1) when n=16, we have

v�=vN > 1: ð4:25Þ
(2) when nP16, the ratio v�=vN is strictly increasing with respect to n.
(3) when n!1,

v�=vN � ln n= ln 2: ð4:26Þ
Proof. (1) Since QH ¼ Qg ¼ 0, the problem (4.12)–(4.13) is reduced to

max mðrÞ ¼ lnð2þ rÞ
QD þ rQI

; ð4:27Þ

s.t. r is a nonnegative integer: ð4:28Þ

In order to describe the dependency on n, we denote

QD ¼ QDðnÞ; QI ¼ QIðnÞ;
and express vðrÞ in (4.27) as vðr; nÞ. It is easy to see that vð1; 16Þ >
vð0; 16Þ, and the ratio vð1; nÞ=vð0; nÞ is increasing with respect to n. There-
fore, when nP16; vð1; nÞ > vð0; nÞ. This means that when nP16, the solu-
tion r� to (4.27)–(4.28) is positive, and

vðr�; nÞPvð1; nÞ > vð0; nÞ: ð4:29Þ
Therefore, (4.25) is proved by v� ¼ vðr�; nÞ and vN ¼ vð0; nÞ when n ¼ 16.
(2) It suffices to show that if n2 > n1P16, then

vðr�2; n2Þ
vNðn2Þ

>
vðr�1; n1Þ
vNðn1Þ

; ð4:30Þ

where r�1 and r�2 are the solutions to (4.27)–(4.28) with n ¼ n1 and n ¼ n2,
respectively. To prove (4.30), define

wðr; nÞ ¼ vðr; nÞ
vNðnÞ

¼ lnð2þ rÞ
1þ rðQIðnÞ=QDðnÞÞ

:
1

ln 2
: ð4:31Þ

Obviously, for any fixed r > 0, wðr; nÞ is strictly increasing with respect to
n since QIðnÞ=QDðnÞ is strictly decreasing. Recall that it is shown in part(1)
that when nP16; r� > 0. Therefore, if n2 > n1P16,

wðr�1; n2Þ > wðr�1; n1Þ: ð4:32Þ

However, r�2 is the solution to (4.27)–(4.28) with n ¼ n2, which implies

wðr�2; n2Þ ¼
vðr�2; n2Þ

vN
P

vðr�1; n2Þ
vN

¼ wðr�1; n2Þ: ð4:33Þ

Combining (4.33), (4.32) and (4.31) yields (4.30).
(3) To show (4.26), we maximize the objective function vðrÞ in (4.27)

with continuous variable r and estimate its maximizer ~r� when n!1.

308 N. DENG ET AL.

The necessary condition m0ð~r�Þ ¼ 0 leads to the conclusion that ~r� satisfies
the equation

1

2þ r
½QD=QI þ r� � lnð2þ rÞ ¼ 0;

or equivalently,

2þ r
e

ln
2þ r
e
¼ QD=QI � 2

e
: ð4:34Þ

Introducing

z ¼ 2þ r
e

; c ¼ QD=QI � 2

e
; ð4:35Þ

the Equation (4.34) is transfered to

z ln z ¼ c: ð4:36Þ
Note that the function z ln z is increasing when z > e. So it is easy to see
that when c > e, the solution z� to (4.36) satisfies

c

ln c
<z�<

c

ln c� ln ln c
:

Therefore, when c!1,

z� � c

ln c
: ð4:37Þ

Since QD=QI � n=12 when n!1, we conclude by (4.35) and (4.37) that
when n!1, the maximizer ~r� satisfies

~r� � ez� � n=12

ln n
: ð4:38Þ

At last, let us prove (4.26). Obviously, the solution r� to (4.27)–(4.28) satis-
fies

~r� � 1Or�O~r� þ 1:

So (4.38) implies that when n!1,

r� � n=12

ln n
: ð4:39Þ

Therefore, when n!1,

mðr�Þ ¼ lnð2þ r�Þ
QIðQD=QI þ r�Þ �

lnð2þ ðn=12Þ= ln nÞ
QIðn=12þ ðn=12Þ= ln nÞ

� ln n

QI � n=12
;

ð4:40Þ
or

v�

mN
¼ vðr�Þ

vð0Þ �
ln n

QI � n=12
� QD

ln 2
� ln n

ln 2
:

This is just (4.26). h

AN INEXACT NEWTON METHOD 309

Remark 4.6. It is not difficult to show the order

�v�Pv�Pv�½5�PvN; ð4:41Þ

where �v�; v� and vN are respectively the lower bounds of the efficiency given
in Theorems 4.3, 4.2 and 4.4, and m�½5� is the corresponding lower bounds
which we obtained by using the concept of efficiency of [1] and the method
given in this paper for the algorithm proposed in [5]. Some values of the
ratios �v�=vN; v

�=vn, and v�½5�=vN with QH ¼ Qg ¼ 0 are given in the following
table. If these lower bounds are taken as an efficiency measure of the corre-
sponding algorithms, Algorithm CF-PCG is the best one.

5. Numerical Experiments

Algorithm CF-PCG and Newton’s method are tested in our numerical
experiments. The test problems are quoted from the unconstrained optimi-
zation problems in [12]. Because we are interested in middle and large scale
problems, only the problems with the variable dimension n, i.e. Problems
21–26 and Problem 35, are considered. Since the code of Problem 35 is
complicated, it is omitted. Note that this paper is mainly concerned with
the case where the arithmetic operations dominate the computing time. So
Problem 26, where the ratio ðQH þQgÞ=QD approximates 11 when
n ¼ 500; is also removed from our test. Thus, our experiments include five
problems: Problems 21–25. Table 1 lists their names and standard start
points. The ratios ðQH þQgÞ=QD for these five problems are all less than
0.3 when n ¼ 500. In order to compute the parameters p; l1; . . . ; lt; a1; . . . ; at
in running the CF-PCG algorithm and to calculate �v�; v� and vN, we need
to use the numbers of multiplicative operations QD;QI;Qg and QH. Here
QD and QI are computed by (3.72) and (3.73), and QH and Qg are counted
when the Hessian and the gradient are computed.
Algorithm CF-PCG is executed in C++ routines with double precision.

The initial points of the test problems are standard start points. Notice
that the algorithm is a local algorithm and our theoretical results are valid
in a neighbourhood of x�, where

jjrfðxÞjj < 1:

n = 100 n = 200 n = 300 n = 400 n = 500

�v�=vN 2.29 2.94 3.41 3.66 3.95

v�=vN 1.79 2.27 2.59 2.83 3.03

v�½5�=vN 1.57 2.05 2.40 2.66 2.85

310 N. DENG ET AL.

However, the standard start points given in Table 1 may be rather far
away from x�. So, to prevent the premature case, in our code the termina-
tion criterion (2.2) in the PCG step is modified as

jjri�1jjOminfjjbjj1þe; 0:9g:

In addition, the condition

jjrfðxkÞjjO10�6 ð5:1Þ

is used for the termination test, that is, when the condition is satisfied,
computation stops.
In Figures 1–5, the horizontal axis stands for the dimension n, while the

vertical axis stands for the ratio of the CPU times spent by Newton’s
method and by Algorithm CF-PCG. There are two kinds of ratios:

(1) the ratio of CPU times measured by the practical computation, which
is defined as

Rprac ¼
The CPU time by Newton’s method

The CPU time by Algorithm CF-PCG
: ð5:2Þ

The ratios Rprac are dotted by � in Figures 1–5 for Problems 21–25,
respectively. Notice that in Figure 4 there is no � for n ¼ 240;
260; . . . ; 500 since both Algorithm CF-PCG and Newton’s method
are not convergent. The same phenomena appears in Figure 5.

(2) The ratio of CPU times estimated by the theoretical analysis. Notice
that the efficiency of a method is approximately reverse proportional
to the CPU time spent, and the lower bounds of the efficiency coeffi-
cient, e.g. �v�; v�; or. vN are approximations to the efficiency of the
corresponding method. Therefore, the ratios �Rtheo ¼ �v�=vN and
Rtheo ¼ v�=vN should reflect, to certain extent, the ratio of the CPU
time spent by Newton’s method over the one by Algorithm CF-
PCG. We plot �Rtheo and Rtheo in Figures 1–5 which form the upper
theoretical curve and the lower theoretical curve, respectively.

Table 1. List of test problems

Problem no. Problem name Standard start point

21. Extended Rosenbrock function (-1.2,1,-1.2,1,. . . ,)1.2,1)
22. Extended Powell singular function (3,-1,0,1, . . . ,3,-1,0,1)
23. Penalty function I (1,2, . . . ,n)

24. Penalty function II (1/2, . . . ,1/2)

25. Variably dimensioned function (n�1n ,. . . , 1n;0)

AN INEXACT NEWTON METHOD 311

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 1. Algorithm CF-PCG versus Newton’s method (Problem 21)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 2. Algorithm CF-PCG versus Newton’s method (Problem 22)

312 N. DENG ET AL.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4. Algorithm CF-PCG versus Newton’s method (Problem 24)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 3. Algorithm CF-PCG versus Newton’s method (Problem 23)

AN INEXACT NEWTON METHOD 313

The ‘‘ * ’’ in Figures 1–5 show that Algorithm CF-PCG is more efficient
than Newton’s method. Furthermore, the tendency of the practical ratios
Rprac coincide with the theoretical curves. This confirms the validity of our
theoretical analysis in some sense. As we said in the first section, there are
several popular CG preconditioners. In this paper we studied only a rela-
tively simpler case. It would be useful to conduct efficiency analysis for
other preconditioners, but we expect that such a future work shall be more
challenging.

References

1. Brent, R. (1973), Some efficient algorithms for solving systems of nonlinear equation,

SIAM Journal on Numerical Analysis 10, 327–344.
2. Conn, A.R., Gould, N.I.M. and Toint, P.L. (1992), LANCELOT: A Fortran Package for

Large-Scale Nonlinear Optimization (Release A), Springer Ser. Comput. Math. Vol. 17,

Springer-Verlag, Heidelberg, Berlin, New York.
3. Conn, A.R., Gould, N. and Toint, P.L. (1992), Numerical Experiments with the LAN-

CELOT package (Release A) for large-scale nonlinear optimization, Technical Report,
92–075, Rutherford Appleton Laboratory, Chilton, England.

4. Dembo, R., Eisenstat, S. and Steihaug, T. (1982), Inexact Newton method, SIAM Journal
on Numerical Analysis 19, 400–408.

5. Deng, N.Y. and Wang, Z.Z. (2000), Theoretical efficiency of an inexact Newton method,

Journal of Optimization Theory and Applications 105, 97–112.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 5. Algorithm CF-PCG versus Newton’s method (Problem 25)

314 N. DENG ET AL.

6. Dennis, J.E. and Schnabel, R.B. (1983), Numerical methods for Unconstrained Optimiza-

tion and Nonlinear Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
7. Dixon, L.C.W. and Price, R.C. (1988), Numerical Experience with the Truncated Newton

method for unconstrained optimization, Journal of Optimization Theory and Applications

56, 245–255.
8. Eisenstat, S.C. and Walker, H.F. (1996), Choosing the forcing terms in an inexact Newton

method, SIAM Journal on Scientific Computing 17, 33–46.

9. Gill, P.E., Murray, W. and Wright, M.H (1981), Practical Optimization, Academic Press,
London and New York.

10. Gould, G.H. and Vanloan, C.F. (1996),Matrix Computations, 3rd ed., The Johns Hopkins

University Press, Baltimore.
11. Luenberger, D.G. (1984), Linear and Nonlinear Programming, 2nd ed., Addison-Wesley

Publishing Company.
12. More, J.J., Garbow, B.S. and Hillstrom, K.E. (1981), Testing unconstrained optimization

software, ACM Transactions on Mathematical Software 7, 17–41.
13. Nocedal, J. (1996), Large scale unconstrained optimization, Report-DEECS, North-

western University.

14. Nocedal, J. and Wright, S.J. (1999), Numerical Optimization, Springer.
15. Ortega, J.M. and Rheinboldt, W.C. (1970), Iterative Solution of Nonlinear Equations in

Several Variables, Academic Press, London.

16. Ostrowski, A. (1960), Solution of Equations and Systems of Equations; Academic Press,
New York.

17. Saad, Y. (1996), Iterative Methods for Sparse Linear Systems, PWS Publishing Company.
18. Steihaug, T. (1993), The conjugate gradient method and trust region in large scale opti-

mization, SIAM Journal on Numerical Analysis 20, 626–637.
19. Toint, P.L. (1981), Duff, I.S. (ed.), Towards an Efficient Sparsity Exploiting Newton

Method for Minimization, Sparse Matrices and Their Uses, Academic Press, London,

England, 57–88.

AN INEXACT NEWTON METHOD 315

